Mersana

THERAPEUTICS

The DolaLock-based ADC Platforms: Dolaflexin & Dolasynthen

Timothy B. Lowinger, PhD Chief Science & Technology Officer

> World ADC Summit October 2019

- Brief introduction to the Dolaflexin platform and the DolaLock payload
- Update on the clinical development of XMT-1536, a Dolaflexin ADC targeting NaPi2b
- Dolasynthen a fully homogeneous ADC platform incorporating the DolaLock payload
- Immunosynthen an immunostimulatory ADC platform

Dolaflexin and the DolaLock Payload

Novel Dolaflexin Platform Technology

Designed to Expand Therapeutic Index vs Other ADC Platforms

Fleximer[®] Polymer

- High DAR
- Optimal PK and drug-like properties
- Efficacy against low antigen expressing tumors

DolaLock Payload

 Controlled bystander effect for greater efficacy and tolerability A *biodegradable, biocompatible* scaffold providing *aqueous solubility, charge balance*, and a high *drug* to antibody ratio (ideally 10-12 per mAb) on average

Proprietary Auristatin DolaLock Payload provides Unique Pharmacology – a <u>Controlled Bystander Effect</u>

DolaLock Provides Prolonged Tumor Exposure and Improves Tolerability

Mersana

XMT-1536 A NaPi2b-targeted Dolaflexin ADC

NaPi2b: An Attractive ADC Target Ideally-Suited for Mersana's Innovative Platforms

- Broadly expressed in ovarian cancer and NSCLC adenocarcinoma
 - No detectable expression in squamous NSCLC
 - Limited expression in healthy tissues on apical surface of polarized epithelium (inaccessible to bloodstream limiting potential for on-target toxicities)
- NaPi2b is a lineage marker (not an oncogene) that transports inorganic phosphate (Pi) into the cell
 - Not downregulated in response to treatment
 - High expression of NaPi2b is correlated with the presence of EGFR mutations in NSCLC adenocarcinoma
- Companion diagnostic can distinguish across low, medium, and high expression
 - Correlation between biomarker expression and response in preclinical and clinical settings

XMT-1536 Data Show Improved Efficacy and Tolerability to vcMMAE ADC in Head to Head Preclinical Studies

NaPi2b Expression Levels Have Been Predictive of Response to XMT-1536 in Ovarian Cancer Patient-Derived Models

- Proprietary research assay validated and used for retrospective evaluation of patients
- Preclinical data demonstrate NaPi2b expression highly correlated with response
- ~60% of ovarian cancer patients predicted to have NaPi2b score associated with deep responses in PDX models

XMT-1536 Phase 1 Dose Escalation Study Design

Data Presented at ASCO with a Data Cutoff of May 10, 2019

- **Patient population:** patients with ovarian epithelial, non-squamous lung, endometrial, papillary renal, salivary duct, or papillary thyroid cancers, progressing after standard treatments
- **Dosing:** XMT-1536 administered IV initially every 3 weeks, amended to every 4 weeks, until disease progression or unacceptable toxicity
- Dose escalation design: single-patient cohorts for first two dose levels, followed by a standard "3 + 3" design
- Assessments: standard assessments including AEs, preliminary activity, concomitant medications, safety labs, PK

lersana

Patients Were Heavily Pretreated and <u>Unselected for NaPi2b</u> As of May 10, 2019

(N = 37)		
Age (years)	Median (range)	64 (39-93)
Sex – N (%)	Female Male	32 (86) 5 (14)
ECOG performance status – N (%)	0 1	11 (30) 26 (70)
Tumor type – N (%)	Ovarian, fallopian tube, or primary peritoneal NSCLC Endometrial Papillary renal Salivary duct	22 (59) 4 (11) 8 (22) 2 (5) 1 (3)
Prior lines of therapy for metastatic disease (N=37)	Median (range)	4 (1-13)
Prior lines of therapy, ovarian cancer only (N = 22)	Median (range)	5 (1-11)

XMT-1536 was Well-Tolerated with Most AE's Grade 1-2

As of May 10, 2019

Treatment-Related Adverse Events in ≥10% of Patients

N = 37	N (%)					
Preferred Term	Grade 1	Grade 2	Grade 3	Total		
Nausea	12 (32)	2 (5)	0	14 (38)		
Fatigue	4 (11)	7 (19)	0	11 (30)		
Headache	5 (14)	5 (14)	0	10 (27)		
Aspartate aminotransferase (AST) increased	3 (8)	2 (5)	4 (11)	9 (24)		
Decreased appetite	1 (3)	6 (16)	0	7 (19)		
Blood alkaline phosphatase increased	6 (16)	0	0	6 (16)		
Vomiting	4 (11)	1 (3)	0	5 (14)		
Gamma-glutamyltransferase (GGT) increased	3 (8)	1 (3)	0	4 (11)		
Myalgia	3 (8)	0	1(3)	4 (11)		
Pyrexia	3 (8)	1 (3)	0	4 (11)		

Dose Escalation Continues

Safety:

- No Grade 4 or 5 treatment-related adverse events (TRAEs)
- Low rate of toxicities associated with microtubule-targeting agents or other ADC platforms, such as neutropenia, ocular toxicities, or peripheral neuropathy

Dolaflexin Safety Profile Easily Monitored; High Consistency between Early Clinical and Preclinical Data

Preclinical Data Demonstrate Transient AST Elevations Are Correlated with Kupffer Cell Hypertrophy

- Kupffer cells are involved in AST clearance
- Transient elevation is consistent with a change in clearance kinetics
- Transient elevations of AST were not associated with hepatocellular necrosis based on histopathology
- AST elevations peak at day 8 and return to normal along with Kupffer cell appearance

Clinical Data Mirror Preclinical Observations

- Repeatable and predictable pattern: transient AST peaking on Day 8, returning to baseline or Grade 1 by next dose (sawtooth pattern)
- Patients treated for over 34 weeks maintained predictable pattern
- No changes in bilirubin. No cases of Hy's Law

AST: Aspartate aminotransferase; Also known as serum glutamic oxaloacetic transaminase (SGOT); CK: Creatine Kinase; ALT: Alanine aminotransferase

Response Evaluable Population, <u>Unselected for NaPi2b</u>

As of May 10, 2019

Outcomes in Ovarian Cancer (OC) & Non-small Cell Lung Cancer (NSCLC)	All OC	All NSCLC	OC ≥20 mg/m²	NSCLC ≥20 mg/m²	OC ≥30 mg/m²
Ν	19	3	16	2	7
PR*	3 (16%)	0 (0%)	3 (19%)	0 (0%)	2 (28%)
SD*	8 (42%)	2 (67%)	6 (38%)	2 (100%)	3 (43%)
DCR (PR + SD)	11 (58%)	2 (67%)	9 (57%)	2 (100%)	5 (71%)
PD*	8 (42%)	1 (33%)	7 (43%)	0 (0%)	2 (28%)

- Based on objective responses and duration of treatment
- Clinical activity was observed at doses of 20 mg/m² and higher

*As measured by RECIST, version 1.1

Ovarian Cancer Patient with Confirmed PR at Cycle 3

As of May 10, 2019

- 70-year-old woman with platinum-resistant high-grade serous ovarian cancer treated at DL 4A (20 mg/m²)
- 11 prior lines of therapy, with progression on most recent therapy of cyclophosphamide and bevacizumab
- Target lesions of perihepatic and mid-abdominal metastases, 52 and 42 mm respectively
- Decrease of 40% in diameter of target lesions at the end of Cycle 2 (4-week cycles) and 75% at the end of Cycle 3

Single Agent Activity in Platinum-Resistant Ovarian Cancer Based on Literature Review

Drug	Prior Lines of Therapy	ORR	PFS/TTP* Months	OS Months
Paclitaxel	1-2	13-37%	3.3-8	9-15
Topotecan	1	17-28%	3.1-5.3	10-14
Oxaliplatin	1-2	16%	2.8	10
PLD	1-2	8-20%	2.1-5.8	8-19
Gemcitabine	1-2	9-29%	3.6-4.7	12-13
Treosulfan	1	16%	2.9	10
Study (Control Arm) – Drug				
AURELIA - Investigator's Choice (PLD/Taxol/Topotecan)	1-2	12%	3.4	13.3
JAVELIN 200 – PLD	1-3	4.2%	3.5	13.1
FORWARD I - Investigator's Choice (PLD/Taxol/Topotecan)	1-3	12%	NR	NR

Ten Bokkel Huinink JCO 1997, Rosenberg P Acta Oncol. 2002, Piccart MJ JCO 2000, Gordon AN JCO 2001, Ferrandina G JCO 2008, Meier W Gynecol Oncol. 2009, Mutch DG JCO 2007, Vergote I Int J Gynecol Cancer 2010, Monk BJ JCO 2010, Pignata S Lancet Oncol; Pujade-Lauraine, E, et al. Javelin 200 Study SGO 2019 LBA; Pujade-Lauraine, E, JCO 2014.

Forward I press release dated March 1, 2019

*PFS = Progression-Free Survival; TTP = Time to progression; NR = Not Reported

XMT-1536 Ovarian Cancer Data in Context, Unselected for NaPi2b Expression

	Line of Therapy*						
	2nd	3rd	4th	5th	6th	7th	
ORR %	26-34%	12-20%	3-17%	5-11%	0-8%	0%	
DCR %	59%	16-45%	9-33%	9-44%	0-23%	0-20%	
	XMT-1536 Dose Level ≥30 mg/m² Lines of Therapy: Median 5 (3-8)						
ORR %				28%			
DCR %	71%						

* Calculated according to P.J.Hoskins; Nhu Le, Gynecologic Oncology 2005; I. Bruchim et al, EJOGRB 2013

Ovarian Cancer and NSCLC Adenocarcinoma Duration As of May 10, 2019

All Completed Dose Levels OC and NSCLC Patients, N=26

XMT-1536 Phase I Expansion Study Initiated

Study Designed to Confirm Profile and Inform Path to Approval in High Unmet Medical Need Populations

Expansion Study Initiated: 36 mg/m² dose on Q4W schedule

Expansion: Platinum-Resistant

Ovarian Cancer

Eligibility criteria:

- High-grade serous histology
- 1-3 prior lines of therapy
- Platinum-resistant
- Archived tumor and fresh biopsy (if medically feasible)

Expansion: NSCLC Adenocarcinoma

Eligibility criteria:

- Adenocarcinoma histology
- Prior treatment with a platinum doublet and PD-1/L1 inhibitor
- No additional prior treatment with cytotoxics or immunotherapy
- Prior TKIs for patients with targetable abnormalities
- Archived tumor and fresh biopsy (if medically feasible)

Dose Escalation Continuation

- MTD not determined in dose escalation study
- Exploring 43 mg/m² dose (~1.2 mg/kg) in parallel to expansion study to inform future clinical development

Dolasynthen

Dolasynthen

A Precise, Fully Synthetic, Customizable and Homogeneous Approach

Many Factors Can Influence the Performance of an ADC:

- Drug-to-antibody ratio
- Site of bioconjugation
- Payload employed
- Linker cleavable vs. non-cleavable
- Hydrophilicity / hydrophobicity
- Charge profile
- Means of bioconjugation lysine, cysteine, thiomab, enzymatic, etc.
- Characteristics of Fc portion of mAb e.g. Fcγ, FcRN binding

The optimal combination will likely differ based on the target, the antibody and the indication

Optimized Dolasynthen Trimeric Scaffold

Mersana

THERAPEUTICS

Applying Dolasynthen: SAR at the ADC Level

- Trastuzumab was used as a model to synthesize ADCs with variations in:
 - DAR (6, 12)
 - Bioconjugation site(s)
 - Bioconjugation technology

	ADC 1	ADC 2	ADC 3	ADC 4	ADC 5	ADC 6	ADC 7
Bioconjugation	А	В	А	С	С	D	А
DAR	6	6	6	6	6	12	12
Site specific				(site 1)	(site 2)		

Efficacy and PK Reveal the Optimal Candidate

PK in tumor bearing mice (0.133 mg/kg payload single dose)

Immunosynthen

Expanding Immuno-Oncology Approaches

Why Pursue Systemic Delivery of STING as an ADC?

- Current clinical STING compounds limited to intra-tumoral injection due to concern of systemic toxicity as well as PK limitations
 - Limits clinical indications and tumors accessible to injection
 - Debate over effect on distal tumors/metastases (abscopal effect)
 - No clinical evidence of abscopal effect yet to date
 - Recent report by GSK of free agonist delivered systemically; Fast clearance and potential for limited TI
- ADCs are suited to overcome limitations with free agonists
 - Accessibility to primary and metastatic tumors
 - Amenable to antigen specific targeting on tumor resident immune cells
 - Longer exposure at lower doses- promotes systemic adaptive immunity
 - Active intracellular delivery to cytoplasmic STING

Leveraging Mersana's Synthemer Platform Approach for STING

Critical Attributes Matched to Payload and Target

- Initial ADC with STING agonist resulted in aggregation due to lipophilic payload
- Linker/scaffold optimization effort tailored to particular STING agonist

100x Increased Potency of ADC over Free Agonist

Durable Tumor Regressions in 10/10 Animals at 3 mg/k

STING ADC at Significantly Lower Dose Outperforms Systemically Administered Agonist

12H

72H

12H

72H

A special thank you to all of the patients involved in our clinical trial, and their families

