Summary

XMT-1536 is a novel, highly potent NaPi2b-targeted antibody-drug conjugate (ADC) comprising of an average of 10 auristatin molecules conjugated to XMT-1535, a novel humanized anti-NaPi2b antibody, via the Dolafieldin linker. The auristatin payload is enzymatically cleaved upon ADC trafficking to the endosomal/lysosomal compartment, releasing a cytotoxic auristatin derivative that is capable of bystander effect killing.

In cell binding assays, XMT-1535 antibody binds to non-mucinous ovarian cancer (OC) cells with low nonspecific affinity, which is unaffected by conjugation of the Dolafieldin drug conjugate. XMT-1536 is 1.2 log10 more potent than a non-binding Dolafieldin ADC control, consistent with target-dependent cytotoxic effect.

In vivo XMT-1536 induced partial tumor regressions in the OVCAR3 OC model after a single dose of 3 mg/kg (0.21 mg/kg payload equivalent dose), and complete tumor regressions after a single dose of 5 mg/kg (0.38 mg/kg payload dose) or 3 weekly doses of 3 mg/kg. XMT-1536 was also tested in a patient-derived model of NSCLC, where it led to significant tumor growth delay and regressions.

XMT-1535 is cross-reactive with mucinous monkey NaPi2b, allowing an informative evaluation of whether XMT-1536 retains good tolerability in non-human primates. XMT-1536 was administered to cynomolgus monkeys in an exploratory single dose study up to 5 mg/kg ADC (4294 µg/m2 auristatin payload equivalents), with no observed target-mediated toxicity and limited adverse findings. Of note, there was no evidence of bone marrow toxicity, which has been observed generally forcleavable auristatin ADCs, and specifically for a recently published auristatin-based NaPi2b ADC (Lin et al., Clinical Cancer Research, 2015).

Based on these data, XMT-1536 is advancing to early clinical development for the treatment of NaPi2b-expressing tumors.

Discussion and Conclusions

- XMT-1535 Dolafieldin conjugation (XMT-1536) does not adversely affect ADC target binding.
- XMT-1536 is highly active in vitro.
- XMT-1536 is highly active in vivo in OC xenograft model.
- XMT-1536 is highly active in vivo in patient derived NSCLC xenograft models.
- XMT-1536 is cross-reactive with mucinous monkey NaPi2b, allowing an informative evaluation of whether XMT-1536 retains good tolerability in non-human primates.
- XMT-1536 demonstrates good efficacy in plasma and very low exposure to free drug.

Acknowledgements

We gratefully acknowledge the contribution of the work by our collaborators at Charles River Discovery Research Services (Mariemont, NC and Wilmington MA), SNBL USA, Ltd. (Eustis, VA), Champions Oncology, Inc. (Baltimore, MD), START (San Antonio, TX).

References