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Innovative and Highly Differentiated ADC 
Technologies and Platforms

2DAR = Drug-to-antibody ratio
STING = Stimulator of Interferon Genes

Efficacy without severe 
neutropenia, 

neuropathy, or ocular 
toxicity

DolaLock Dolaflexin

Improved therapeutic 
index vs. other 

platforms

Dolasynthen

Homogenous & 
Customizable Platform

Immunosynthen

Systemic 
administration with 
targeted immuno-
stimulatory effect

• Controlled bystander 
effect

• Selectively toxic to 
rapidly dividing cells

• Not a PgP substrate

• Induces immunogenic 
cell death

• DolaLock payload

• Polymer scaffold

• DAR ~10-12 

• Excellent drug like 
properties

• DolaLock payload

• Synthetic scaffold

• Site-specific 

• Precise DAR (2-24)

• Novel STING agonist

• Complete regression 
with one dose in 
multiple preclinical 
models

• Limited effect on 
systemic cytokines



• Preclinical evidence that STING activation induces prolonged anti-tumor activity and 
generates immune memory
• Other agonists, including TLR7/8, have not shown similar activity in reported studies

• STING activation is more specific to potent Type I interferon gene activation, while TLR activation is 
associated with general inflammation 

• Emerging clinical evidence that STING agonists (intratumoral injection) activate the 
pathway and do not have significant tolerability concerns 

• STING agonists are highly compatible with bioconjugation through the platform 
technology as they have favorable physicochemical properties

• Oligonucleotides are less compatible (i.e. TLR9, RIG-1)

• Mersana has focused on non-CDN agonists

Why We Invested in STING over other Innate 
Immunity Pathways 
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ADCs are suited to overcome limitations of free agonist (intratumoral or IV)

– Targeted delivery reduces toxicity liabilities 
• Minimize toxicity to T and B cells by selective targeting of ADCs (T cell intrinsic function)
• Minimize systemic inflammation

– Improved pharmacokinetics

– Accessibility to metastatic sites

– No restriction on tumor type, location or size

Strong Rationale for a STING ADC Approach
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Holistic Approach to Build the Optimal STING ADC
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1. Platform
• Payload
• Linker
• Scaffold
• Drug-to-Antibody Ratio (DAR)

2. Target and Antibody
• Immune cell antigens
• Tumor cell antigens
• Tumor-associated antigens

Payload 
molecule

Drug load per 
scaffold

Charge 
balance

Aqueous 
solubilityBioconjugationAntibody

Evaluation included:
• Analytical
• In vitro characterization
• In vivo characterization
• Developability



• The target cell is not necessarily a tumor cell
– Potential for new mechanisms for payload delivery
– Implications for choice of targets and antibodies 

• Optimal payload requirements are not known
– Potency
– Membrane permeability & efflux properties
– Metabolism rate (once released)

• Special considerations for I-O in vivo studies
– Xenograft models are grown in immune-compromised mice
– Syngeneic models are not compatible with certain targets and antibodies

Immunostimulatory ADC Platform Development Cannot Be 
Based Solely on Cytotoxic ADC Experience
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Platform Development



• Identified novel compounds representing multiple series
– Compounds have a range of biological activity & diverse physicochemical properties

• Leveraged structure-based drug design (SBDD) and crystallography
– Crystal structure solved with novel ligand bound to STING

• Filed IP

Novel STING Agonists Designed for ADCs

*Ligand has been removed from structure 8
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Leveraging Our ADC Expertise and Proprietary Technologies
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Summary of Exploratory Toxicology in NHP

10

• Evaluated ADCs based on 3 antibodies
• Dosed up to 9 mg/kg antibody (~0.3 mg/kg STING agonist)
• Repeat-dose and single-dose cohorts
• Clinical observations

• All animals appeared normal throughout study
• No changes in body temperature
• No mortality or unscheduled euthanasia 

• Toxicokinetics
• High exposure after both administrations; dose dependent; overall profile similar to non-STING ADCs
• ADC highly stable in circulation; minimal free payload in plasma

• Serum Cytokines
• Transient, modest elevation of 5 cytokines out of 24 tested; similar to results in mouse

• No adverse changes in hematology or clinical chemistry
• No adverse findings in histopathology



Targets and Antibodies



Comprehensive Approach to Target Validation and Selection

12Image based on DOI: 10.5772/intechopen.72648

Cell Types in the Tumor Microenvironment

Macrophages

Dendritic cellsTumor Cell and 
Tumor-associated
Antigens



STING Agonist ADCs with Complementary Therapeutic 
Rationales Based on Antigens and Target Cells
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Potential
Activation

Activation

Delivery to 2 Cell Types 

Target Category Rationale

Immune Cell • Direct activation of immune cells

Tumor Cell
• Delivery to tumor and immune cells
• Tumor-targeted delivery

Tumor-Associated
• Proximity of antigen to immune cells
• Tumor-targeted delivery
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Tumor-Targeted STING Agonist ADC Induces Killing of 
Cancer Cells by PBMCs 
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- Cancer cells have stable 
expression of a red 
fluorescent protein in the 
nucleus

- These cancer cells have 
minimal STING activity

PBMCs

Co-culture:
Cancer cells & PBMCs

100-Fold Increased Potency of ADC over Free Agonist



T Cells are Dispensable for Cancer Cell Killing
Supports the hypothesized mechanism of action
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Sustained Tumor Regressions Induced by a 
Single Administration of STING ADC
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Target-Dependent Immune Cell Infiltration and 
Cytokine Induction in Tumors
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Murine cytokine expression
(qPCR on FFPE samples)

• ADC single dose
• Tumors harvested 12 or 72 hrs post dose 
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Dramatically Lower Induction of Serum Cytokines in Mice by 
STING ADC Compared to Free STING Agonist
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Another Target and Tumor Model:
STING Agonist ADC Inhibits Tumor Growth After a Single Dose
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Sustained Tumor Regressions After a Single Dose in a 
Syngeneic Model
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Immunological Memory Induced by STING Agonist ADC
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Conclusions
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1. STING agonist ADC platform
• Novel agonist payload optimized for ADC

• Linker & scaffold designed to maximize therapeutic index 

• Well-tolerated in non-human primates

2. In vivo activity in multiple targets, tumor models and mouse strains

3. Differentiation from IV agonist: activity and tolerability

4. Immunological memory

5. On track to nominate 1st Development Candidate in 2020 



Mersana’s STING ADC Research Team
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