

Tumor Targeting of a STING Agonist by Means of an Antibody-Drug Conjugate Induces Potent Anti-Tumor Immune Responses

Marc Damelin, Ph.D.

Innate Immunity Stimulating Therapies Summit Digital Event – July 22, 2020

Innovative and Highly Differentiated ADC Technologies and Platforms

DAR = Drug-to-antibody ratio STING = Stimulator of Interferon Genes

Why We Invested in STING over other Innate Immunity Pathways

- Preclinical evidence that STING activation induces prolonged anti-tumor activity and generates immune memory
 - Other agonists, including TLR7/8, have not shown similar activity in reported studies
 - STING activation is more specific to potent Type I interferon gene activation, while TLR activation is associated with general inflammation
- Emerging **clinical evidence** that STING agonists (intratumoral injection) activate the pathway and do not have significant tolerability concerns
- STING agonists are highly compatible with bioconjugation through the platform technology as they have favorable physicochemical properties
 - Oligonucleotides are less compatible (i.e. TLR9, RIG-1)
 - Mersana has focused on non-CDN agonists

ADCs are suited to overcome limitations of free agonist (intratumoral or IV)

- Targeted delivery reduces toxicity liabilities
 - Minimize toxicity to T and B cells by selective targeting of ADCs (T cell intrinsic function)
 - Minimize systemic inflammation
- Improved pharmacokinetics
- Accessibility to metastatic sites
- No restriction on tumor type, location or size

Payload

molecule

Holistic Approach to Build the Optimal STING ADC

Evaluation included:

- Analytical
- In vitro characterization
- In vivo characterization
- Developability

Antibody

1. Platform

- Payload
- Linker
- Scaffold

Aqueous

solubility

Bioconjugation

Drug-to-Antibody Ratio (DAR)

2. Target and Antibody

- Immune cell antigens
- Tumor cell antigens
- Tumor-associated antigens

Charge

balance

Drug load per

scaffold

Immunostimulatory ADC Platform Development Cannot Be Based Solely on Cytotoxic ADC Experience

- The target cell is not necessarily a tumor cell
 - Potential for new mechanisms for payload delivery
 - Implications for choice of targets and antibodies
- Optimal payload requirements are not known
 - Potency
 - Membrane permeability & efflux properties
 - Metabolism rate (once released)
- Special considerations for I-O *in vivo* studies
 - Xenograft models are grown in immune-compromised mice
 - Syngeneic models are not compatible with certain targets and antibodies

Platform Development

Novel STING Agonists Designed for ADCs

- Identified novel compounds representing multiple series
 - Compounds have a range of biological activity & diverse physicochemical properties
- Leveraged structure-based drug design (SBDD) and crystallography
 - Crystal structure solved with novel ligand bound to STING
- Filed IP

Summary of Exploratory Toxicology in NHP

- Evaluated ADCs based on 3 antibodies
- Dosed up to 9 mg/kg antibody (~0.3 mg/kg STING agonist)
- Repeat-dose and single-dose cohorts
- Clinical observations
 - All animals appeared normal throughout study
 - No changes in body temperature
 - No mortality or unscheduled euthanasia
- Toxicokinetics
 - High exposure after both administrations; dose dependent; overall profile similar to non-STING ADCs
 - ADC highly stable in circulation; minimal free payload in plasma
- Serum Cytokines
 - Transient, modest elevation of 5 cytokines out of 24 tested; similar to results in mouse
- No adverse changes in hematology or clinical chemistry
- No adverse findings in histopathology

Targets and Antibodies

Comprehensive Approach to Target Validation and Selection

Mersana

STING Agonist ADCs with Complementary Therapeutic Rationales Based on Antigens and Target Cells

Target Category	Rationale	
Immune Cell	 Direct activation of immune cells 	Delivery to 2 Cell Types
Tumor Cell	Delivery to tumor and immune cellsTumor-targeted delivery	
Tumor-Associated	Proximity of antigen to immune cellsTumor-targeted delivery	

Potent

Tumor-Targeted ADC Activates STING in Immune Cells

Mersana

Tumor-Targeted STING Agonist ADC Induces Killing of Cancer Cells by PBMCs

T Cells are Dispensable for Cancer Cell Killing *Supports the hypothesized mechanism of action*

Sustained Tumor Regressions Induced by a Single Administration of STING ADC

Days on Study

17

63

Target-Dependent Immune Cell Infiltration and Cytokine Induction in Tumors

- ADC single dose
- Tumors harvested 12 or 72 hrs post dose

CD45 Immunohistochemistry

Murine cytokine expression

(qPCR on FFPE samples)

Dramatically Lower Induction of Serum Cytokines in Mice by STING ADC Compared to Free STING Agonist

- → Vehicle control
- Targeted ADC (0.09 mg/kg payload = dose for complete tumor regression)
- Control ADC (0.09 mg/kg payload)
- STING diABZI I.V. agonist (5 mg/kg payload = maximum tolerated dose; 37% tumor growth inhibition)

Another Target and Tumor Model: STING Agonist ADC Inhibits Tumor Growth After a Single Dose

Sustained Tumor Regressions After a Single Dose in a **Syngeneic Model**

Days on study

21

Immunological Memory Induced by STING Agonist ADC

Efficacy Study

Tumor free mice re-implanted with:

- Original targeted tumor on the opposite flank (blue), and
- Non-targeted tumor on the other flank (red).
- Untreated age matched mice also implanted as a control (black line).

Rechallenge Study (Dual Flank)

Conclusions

- 1. STING agonist ADC platform
 - Novel agonist payload optimized for ADC
 - Linker & scaffold designed to maximize therapeutic index
 - Well-tolerated in non-human primates
- 2. In vivo activity in multiple targets, tumor models and mouse strains
- 3. Differentiation from IV agonist: activity and tolerability
- 4. Immunological memory
- 5. On track to nominate 1st Development Candidate in 2020

Mersana's STING ADC Research Team

Timothy B. Lowinger

Discovery Chemistry

Jeremy Duvall Josh Thomas Keith Bentley Brian Jones Eoin Kelleher Liping Yang Radha Iyengar Dorin Toader

Bioconjugation

Kalli Catcott Bingfan Du Cheri Stevenson Alex Uttard Anouk Dirksen Dorin Toader

Analytical & Bioanalytical

Kenneth Avocetien Stephen Bradley Tyler Carter Susan Clardy Mark Nazzaro Elena Ter-Ovanseyan Ling Xu Jeffrey Zurita David Lee

Translational Medicine

Pamela Shaw Rebecca Mosher

Biology

Raghida Bukhalid Naniye Cetinbas Chen-Ni Chin Scott Collins Timothy Eitas Winnie Lee Travis Monnell Marina Protopopova LiuLiang Qin Kelly Slocum Marc Damelin

