XMT-1660 is a novel DAR4 Dolastatin-based antibody drug conjugate carrying a DolaLock payload with optimized payload efficiency and targeting B7-H4, a tumor antigen that (VCT4) needs tumor-associated macrophages by expression of 7-15 protein and is expressed in tumor-associated macrophages. B7-H4 is expressed in tumors and expressed in human tumor xenografts in the xenograft model of breast cancer. XMT-1660 is composed of an anti-B7-H4 antibody, specifically conjugated to Dolastatin, with a linker of 6-Dolaflexin PEG3 with variable payload dependence on payload. To select the optimal ADC, three ADCs using the same antibody and DolaLock payload were compared. Dolaflexin DAR-12 and Dolasynthen DAR-2 and Dolasynthen DAR-2 and AF-HPA showed significant differences in stability, DAR, and afibody-HPA technology. In vivo studies in breast cancer showed that XMT-1660 DAR-6 outperformed the other ADCs.

B7-H4 Is a Promising Target for a DolaLock ADC
A. Invasive breast, uterine, and ovarian cancers are among
endometrial, and ovarian.

B. A summary of published B7-H4 protein activity and induced sustained tumor regressions after a single administration. XMT-1660 and the Dolaflexin DAR-12 ADC both demonstrated tumor regressions after a single administration. XMT-1660 and the Dolaflexin DAR-12 ADC both demonstrated tumor regressions after a single administration.

C. XMT-1660 is a novel DAR-6 Dolasynthen-based antibody drug conjugate carrying a DolaLock payload with controlled bystander effect and targeting B7-H4, a tumor antigen that needs tumor-associated macrophages by expression of 7-15 protein and is expressed in tumor-associated macrophages. XMT-1660 is composed of an anti-B7-H4 antibody, specifically conjugated to Dolastatin, with a linker of 6-Dolaflexin PEG3 with variable payload dependence on payload.

D. These data indicate that XMT-1660 exhibited a superior preclinical profile to the other ADCs and more generally demonstrate the importance of DAR-range studies to identify the optimal ADC. These results also depict significant differences in stability, DAR, and afibody-HPA technology. In vivo studies in breast cancer showed that XMT-1660 DAR-6 outperformed the other ADCs.

E. XMT-1660 DAR-6 Outperformed Other DolaLock ADCs in Triple Negative Breast Cancer Models MX-1 and HBCx-24

F. MX-1 Tumor-Bearing Mice

G. MX-1 Tumor-Bearing Mice

H. MX-1 Tumor-Bearing Mice

References