Tumor cell-intrinsic STING pathway activation leads to robust induction of Type III Interferons and contributes to the anti-tumor activity elicited by STING agonism.

Abstract

The tumor cell-intrinsic STING pathway plays a critical role in inducing anti-tumor immunity by upregulating Type III IFN (IFNλ) and IFN-λ-induced genes within the tumor microenvironment in response to treatment with STING agonists. Therefore, targeting this pathway holds great promise as a tactic to improve the efficacy of current immunotherapies. However, the tumor cell intrinsic STING pathway is also essential for the anti-tumor activity of STING agonist antibody-drug conjugates (ADCs), which are currently in clinical trials. We previously demonstrated that tumor cell-targeted STING-agonist ADCs activated STING downstream of STING pathway activation in both tumor cells and immune cells, leading to potent anti-tumor activity in preclinical tumor models.

In this study, we investigated the mechanism by which tumor-targeted STING agonist ADCs activate the tumor cell intrinsic STING activity in tumor cells and immune cells, and how this activates IFNλ and Type III IFN production in vivo.

Background

- **Systematically administered**
- **Tumor targeted delivery of STING agonist**
- **Efficacy in a single dose across multiple tumor models**
- **Increased burden in multiple co-injected cell types**
- **Systematic induction of antiviral cytokines**
- **Drastically enhanced efficacy compared to a systemically administered free STING agonist**

Proposed mechanism of action

Tumor cell-targeted immunosynthetic STING agonist ADCs

- **Systematically administered**
- **Tumor targeted delivery of STING agonist**
- **Efficacy in a single dose across multiple tumor models**
- **Increased burden in multiple co-injected cell types**
- **Systematic induction of antiviral cytokines**
- **Drastically enhanced efficacy compared to a systemically administered free STING agonist**

RESULTS

Tumor cell-targeted STING agonist ADCs exhibit significant activity in cancer cell / primary human immune cell co-cultures and in vivo tumor models.

Figure 1. Delivery of a STING agonist into tumor cells and secondary immune cells

Figure 2. Tumor cell-targeted STING agonist ADCs exhibit significant activity in cancer cell / primary human immune cell co-cultures and in vivo tumor models

Figure 3A. Consistent with the results shown in Fig. 3A, targeted ADC with wt Fc induced significant killing of both STING wt and STING ko tumor cells

Figure 3B. Tumor cell-targeted Fc mutant STING agonist ADCs exhibit significant activity in cancer cell / primary human immune cell co-cultures and in vivo tumor models

Figure 3C. STING agonist ADCs induce Type III Interferon activation in cancer cell / primary human immune cell co-cultures

Figure 4. Tumor cell-targeted STING agonist ADCs induce Type III Interferon activation in cancer cell / primary human immune cell co-cultures

Figure 5. Tumor cell-targeted STING agonist ADCs induce IFNλ production in tumor cell / primary human immune cell co-cultures

CONCLUSIONS

- The immunosynthetic STING ADC platform enables tumor-targeted delivery of a STING agonist with improved efficacy and selectivity compared to a free STING agonist.
- Antitumor activity of STING agonist ADCs involves activation of STING pathway in both immune cells and cancer cells.
- In the study we have demonstrated:
 - Tumor cell-intrinsic STING pathway can be activated in the presence of cues from immune cells.
 - Tumor cell-targeted STING agonist ADCs induce IFNλ production in cancer cells.
 - Tumor cell-targeted STING agonist ADCs may be a critical tool for induction of Type III IFN in vivo.

References