Mersana

XMT-2056:

A Her-2 Targeted Immunosynthen STING agonist antibody drug conjugate

Timothy B. Lowinger, PhD Chief Science & Technology Officer

World ADC Summit 2022 September 7, 2022 San Diego, CA

Targeted Stimulation of Innate Immunity has the Potential to Deliver Breakthroughs

Innate Immunity

Includes STING

"Start the Engine"

- Includes CTLA4, PD1/PD-L1
- "Release the brakes"

 The immunotherapy revolution has focused on adaptive immunity

- Innate immune stimulation could address unmet medical needs in
 - Checkpoint refractory tumors
 - Checkpoint relapsed tumors
 - Tumor types where checkpoints have minimal activity

Nature Reviews Cancer 4, 11-22 (2004)

STING Is a Fundamental Immune Pathway

Human Genetics

Liu et al, NEJM, 2014

Ligand-independent gain-of-function mutation in STING leading to pediatric STING-associated vasculopathy with onset in infancy (SAVI) - severe autoinflammatory disease

STING knock-out (KO) mouse (*Tmem173-/-*)

- Unable to mount immune-mediated antitumor response
- Sensitivity to HSV-1 virus infection (Ishikawa et al. 2009, Nature)

Cancer Pharmacology

STING agonist (cGAMP) inhibits tumor growth via an interferon response

An ADC is an Ideal Approach for Targeted Innate Immune Activation with STING

Intratumoral STING Agonist

Systemic Free STING Agonist

STING-Agonist ADC

- Systemic administration with targeted delivery to all tumor lesions while avoiding healthy tissues
- Improved anti-tumor activity compared to free agonist
- Improved tolerability compared to free agonist

Tumor, no immune activation

Tumor with STING-Mediated Innate Immune Activation

How and Where You Deliver STING is Key to Maximizing the Therapeutic Index – a Major Advantage of an ADC

Free STING Agonist

Gulen et al. *Nature Comm*. 2017 Wu et al. *Immunity* 2020

Immunosynthen ADC

Antigen-dependent, active delivery into tumor cells

FcγR-mediated, active delivery into tumor-resident myeloid and dendritic cells

No delivery to T cells

Proprietary STING Payload Specifically Designed for an ADC

Extensive Structure-based Medicinal Chemistry Effort

- Highly potent STING agonist
 - $K_D = 271 \text{ pM (SPR)}$
 - EC₅₀ = 4.4 nM (IRF3 reporter, WT haplotype)
 - Active against all major haplotypes
 - Active vs. mouse, rat, NHP, human
- Very low cell permeability
 - $P_{app} < 0.1 \times 10^{-6} \text{ cm/s}$
 - ADC >100-fold more active than free payload
- · Short half-life
 - In vitro ½ life (human microsomes) = 28 minutes
 - In vivo ½ life (mouse) < 0.5 hour
- Physicochemical properties suitable for an ADC
 - Low cLogP, high tPSA

Co-crystal structure confirms agonist binds in an active, "closed" conformation of the protein

Linker-Scaffold Specifically Optimized for the STING Agonist

Single, Low Dose of Prototype Trastuzumab-STING ADC Outperforms Comparators

Legend

- Vehicle
- Non-binding Control STING ADC (3 / 0.09 mg/kg)
- Trastuzumab (3 mg/kg)
- diABZI IV STING agonist (5 mg/kg)*
- Trastuzumab-STING ADC (3 / 0.09 mg/kg)
 - All groups dosed IV
 - ADC doses reflect mAb / payload mg/kg

*diABZI IV STING agonist described in J.M. Ramanjulu *et al.* (2018) *Nature* (compound 3 in reference)

&CCLE RNAseq data from DepMap, Broad (2021): DepMap 21Q3 Public

Dramatically Lower Systemic Cytokine Levels After IV Dosing of Prototype Trastuzumab– STING ADC Compared to diABZI Small Molecule STING Agonist

Prototype Trastuzumab-STING ADC Induces STING Pathway Cytokines in Tumor-Resident Mouse Cells <u>and</u> Human Tumor Cells *In Vivo* in a Target-Dependent Manner

Fc-Blocking Experiment Further Confirms Tumor Cell Contribution and Fc-mediated Uptake to Immune cells

Vehicle

In Vivo Efficacy

Tumor Cell Killing in PBMC Co-Culture

Significant anti-tumor activity in vivo & tumor cell killing in vitro is maintained by the Fc-mutant ADC, which cannot internalize into the immune cells

- Demonstrates the contribution of immune cell STING to activity
- Demonstrates the direct contribution of tumor-intrinsic STING activation

Mersana Therapeutics, SITC 2020 & AACR 2021

Immunosynthen ADCs Active Against Diverse Tumor Antigens and Tumor-Associated Antigens in Multiple Models After Single, Low IV Dose

Immunosynthen ADC Triggers Tumor-Specific Immunological Memory

Tumor Growth Inhibition Study

Tumor Rechallenge Study (Dual Flank)

- Tumor free mice re-implanted with targeted tumor on one flank (blue) and a non targeted tumor on the other flank (red).
- Untreated age matched mice also implanted as a control (black line).

Targeting HER2: XMT-2056 Provides a Differentiated Approach to a Well-validated Target

- HER2 is a well-validated target with multiple potential indications
 - Breast cancer, gastric cancer, NSCLC, colorectal cancer
 - Patient selection assays readily available
- Mersana developed a differentiated anti-HER2 antibody with Adimab
 - Specifically optimized for use in an ADC
 - Does not compete with trastuzumab or pertuzumab for HER2 binding
 - Rationale and opportunity for therapeutic combinations
- STING pathway is differentiated from other innate immune pathways
 - Activation in tumor cells and tumor-resident immune cells

XMT-2056: Mersana's First Immunosynthen Development Candidate

In Vitro - Tumor cells with PBMCs

Greater than 1000 fold increase in potency of ADC vs. free payload

 ADC-mediated active delivery of STING payload to HER2 expressing tumor cells and PBMCs

 Target dependent anti-tumor activity after a single dose of 1 mg/kg ADC

In Vivo - Non-Human Primate (NHP)

- High stability as indicated by parallel curves of antibody and conjugated drug
- Comparable PK profiles after 1st and 2nd dose

XMT-2056 Outperforms diABZI IV STING Agonist and Trastuzumab TLR7/8 ISAC in Her2high and HER2low Models

SNU-5 (HER2 "low") CB.17 SCID

(~22,000 receptors/cell; RNAseq&: 5.30)

Vehicle

diABZI IV STING agonist (1.5 mg/kg; q3dx3, IV)*
Trastuzumab (10 mg/kg; qdx1, IP)

Non-binding Control STING ADC (3 / 0.112 mg/kg; qdx1, IV)

Trastuzumab TLR7/8 ISAC (5 / 0.033 mg/kg; q5dx6, IP)#

XMT-2056

- (1 / 0.043 mg/kg; qdx1, IV)
- ♦ (0.3 / 0.013 mg/kg; q5dx6, IP)

(Doses reflect mAb / payload mg/kg)

*agonist described in Ramanjulu et al. (2018) Nature (compd 3 in reference)

*TLR7/8 ISAC described in Ackerman et al, (2020) Nature Cancer

&CCLE RNAseq data from DepMap, Broad (2021): DepMap 21Q3 Public

OME O DIAMETER OF THE PROPERTY OF THE PROPERTY

XMT-2056 Targets a Novel HER2 Epitope Distinct from Trastuzumab and Pertuzumab Allowing for Combinability

XMT-2056 Binds to a Novel Epitope

XMT-2056 Offers a Potentially Differentiated and Complementary Approach to the Treatment of HER2-Expressing Tumors

Combination of XMT-2056 with Trastuzumab Or Pertuzumab Shows Benefit *In Vivo*

Vehicle

XMT-2056 (0.3 / 0.013 mg/kg, IV)

Non-binding control ADC (0.3 / 0.011 mg/kg, IV) + Tras \underline{or} Pert (3 mg/kg, IP)

XMT-2056 (0.3 / 0.013 mg/kg, IV) + Tras or Pert (3 mg/kg, IP) --□-- Pertuzumab

Trastuzumab

Vehicle

Trastuzumab <u>or</u> Pertuzumab (2 mg/kg, IP)

Non-binding control ADC (0.2 / 0.007 mg/kg, IV)

XMT-2056 (0.2 / 0.009 mg/kg, IV)

XMT-2056 (0.2 / 0.009 mg/kg, IV) + Tras or Pert (2 mg/kg, IP)

Benefit from Combination of XMT-2056 with Enhertu (Trastuzumab deruxtecan) in a Tras^R Model

- Vehicle (qwx2 IV)
- Non-binding Control ADC (1.00 / 0.037 mg/kg, qdx1 IV)
- XMT-2056 (1.00 / 0.043 mg/kg, gdx1 IV)
- Enhertu (3.00 / 0.078 mg/kg, qwx2 IV)
 - Enhertu (10.00 / 0.261 mg/kg, qwx2 IV)
- XMT-2056 (1.00 / 0.043 mg/kg, qdx1 IV) +Enhertu (3.00 / 0.078 mg/kg, qwx2 IV)
- XMT-2056 (1.00 / 0.043 mg/kg, qdx1 IV) +Enhertu (10.00 / 0.261 mg/kg, gwx2 IV)

(Doses by mAb / payload mg/kg)

Enhertu published data

19

Benefit from Combining XMT-2056 Surrogate with α PD1, and No Adverse Clinical Signs, in a ratHER2 Engineered Syngeneic Tumor

Rat HER2 expressed in EMT-6 mouse breast cancer model

Additional study planned in a ratHER2 GEMM derived tumor model

Davs on Study

XMT-2056 Displays a Therapeutic Index Based on Exposure in Relevant Pre-clinical Species

NHP Results

Repeat dose studies at <u>36 mg/kg antibody intravenous administration</u>

- No clinical signs, no mortality (considered a NOAEL)
- High exposure, high ADC stability in circulation
- Transient elevation of 5 cytokines out of 24 tested
- No adverse changes in clinical pathology
- No adverse findings in histopathology

XMT-2056 - Summary

- XMT-2056 offers a novel approach to the treatment of HER2-expressing tumors.
- Preclinical data to date shows it:
 - Utilizes a novel antibody that is non-competitive with trastuzumab and pertuzumab
 - Demonstrates target-dependent STING activation of tumor cells <u>and</u> tumor-resident immune cells, both of which can contribute to the anti-tumor effect
 - Is highly efficacious as single agent and in combination with trastuzumab, pertuzumab,
 CPIs and trastuzumab deruxtecan (Enhertu)
 - Is well-tolerated with no adverse events in NHPs after repeat doses at exposures far exceeding those required for efficacy in mouse

Mersana Pipeline

Platform	ADC Program	Target	Indication	Discovery	Preclinical	P1 Dose Escalation	P1 Dose Expansion	P2/Pivotal	P3
Dolaflexin	Upifitamab Rilsodotin (UpRi)*	NaPi2b	Platinum-Resistant Ovarian Cancer	UPLIFT Single-Arm Registrational Trial					
			Platinum-Sensitive Ovarian Cancer	UPGRADE Phase 1-2 Combo					
			Recurrent Platinum- Sensitive Ovarian Cancer Maintenance	UP-NEXT Phase 3 Trial					
Dolasynthen	XMT-1660	B7-H4	Multiple Solid Tumors						
Immunosynthen	XMT-2056	Novel HER2 Epitope	Multiple Solid Tumors			GSł	\ **		
	XMT-2068	Tumor-Associated Antigen	Undisclosed						
	XMT-2175	Tumor-Associated Antigen	Undisclosed						
	Collaborators:								
Dolasynthen	Janssen T	Multiple	Undisclosed						
Dolaflexin	EMD ***	Multiple	Undisclosed)			
	(ASANA BIOSCIENCES	5T4	Undisclosed						

^{*}NaPi2b antibody used in UpRi (formerly XMT-1536) is in-licensed from Recepta Biopharma. Recepta has rights to commercialize UpRi in Brazil.

^{**}XMT-2056 is wholly owned by Mersana, with GSK having an exclusive global license option to co-develop and commercialize the candidate.

Acknowledgements

I would very much like to acknowledge the tireless efforts of the multi-disciplinary team at Mersana, including Research, CMC, Clinical Development, Regulatory, and many others, for the tremendous effort to bring XMT-2056 to the clinic, as well as our collaborators as we continue to advance it for the potential benefit to patients