A Her-2 Targeted Immunosynthen STING agonist antibody drug conjugate

Timothy B. Lowinger, PhD Chief Science & Technology Officer

> World ADC Summit 2022 September 7, 2022 San Diego, CA

Targeted Stimulation of Innate Immunity has the Potential to Deliver Breakthroughs

Innate Immunity

Includes STING

Adaptive Immunity

- Includes CTLA4, PD1/PD-L1
- "Release the brakes"

The immunotherapy revolution has focused on adaptive immunity

- Innate immune stimulation could address unmet medical needs in
 - Checkpoint refractory tumors
 - Checkpoint relapsed tumors
 - Tumor types where checkpoints have minimal activity

Nature Reviews Cancer 4, 11-22 (2004)

STING Is a Fundamental Immune Pathway

Human Genetics

Liu et al, NEJM, 2014

Ligand-independent gain-of-function mutation in STING leading to pediatric STING-associated vasculopathy with onset in infancy (SAVI) - severe autoinflammatory disease

- STING knock-out (KO) mouse (*Tmem173-/-*)
- Unable to mount immune-mediated antitumor response
- Sensitivity to HSV-1 virus infection (Ishikawa et al, 2009, Nature)

STING agonist (cGAMP) inhibits tumor growth via an interferon response

An ADC is an Ideal Approach for Targeted Innate Immune Activation with STING

- Systemic administration with <u>targeted delivery</u> to all tumor lesions while avoiding healthy tissues
- <u>Improved anti-tumor</u> <u>activity</u> compared to free agonist
- Improved tolerability compared to free agonist

Systemic immune activation

Tumor, no immune activation

Tumor with STING-Mediated Innate Immune Activation How and Where You Deliver STING is Key to Mersana Maximizing the Therapeutic Index – a Major Advantage of an ADC Free STING Agonist Immunosynthen ADC Antigen-dependent, Passive, indiscriminate active delivery diffusion into tumor cells Less efficient delivery to Active desired cell types diffusion delivery FcγR-mediated, active delivery into tumor-resident myeloid and dendritic cells Pro-apoptotic effect of T cells (Type I IFN independent) No delivery to T cells Gulen et al. Nature Comm. 2017 Wu et al. Immunity 2020

Proprietary STING Payload Specifically Designed for an ADC

Extensive Structure-based Medicinal Chemistry Effort

- Highly potent STING agonist
 - K_D = 271 pM (SPR)
 - EC₅₀ = 4.4 nM (IRF3 reporter, WT haplotype)
 - Active against all major haplotypes
 - Active vs. mouse, rat, NHP, human
- Very low cell permeability
 - P_{app} < 0.1 x 10⁻⁶ cm/s
 - ADC >100-fold more active than free payload
- Short half-life
 - In vitro $\frac{1}{2}$ life (human microsomes) = 28 minutes
 - In vivo $\frac{1}{2}$ life (mouse) < 0.5 hour
- Physicochemical properties suitable for an ADC
 - Low cLogP, high tPSA

Co-crystal structure confirms agonist binds in an active, "closed" conformation of the protein

Single, Low Dose of Prototype Trastuzumab-STING ADC Outperforms Comparators

Dramatically Lower Systemic Cytokine Levels After IV Dosing of Prototype Trastuzumab– STING ADC Compared to diABZI Small Molecule STING Agonist

Serum cytokines measured with Luminex assay

Prototype Trastuzumab-STING ADC Induces STING Pathway Cytokines in Tumor-Resident Mouse Cells and Human Tumor Cells *In Vivo* in a Target-Dependent Manner

Fc-Blocking Experiment Further Confirms Tumor Cell Contribution and Fc-mediated Uptake to Immune cells

Significant anti-tumor activity in vivo & tumor cell killing in vitro is maintained by the Fc-mutant ADC, which cannot internalize into the immune cells

- · Demonstrates the contribution of immune cell STING to activity
- Demonstrates the direct contribution of tumor-intrinsic STING activation

Mersana Therapeutics, SITC 2020 & AACR 2021

Immunosynthen ADCs Active Against Diverse Tumor Antigens and Tumor-Associated Antigens in Multiple Models After Single, Low IV Dose

Immunosynthen ADC Triggers Tumor-Specific Immunological Memory

Tumor Growth Inhibition Study

 Untreated age matched mice also implanted as a control (black line).

Tumor Rechallenge Study (Dual Flank)

Targeting HER2: XMT-2056 Provides a Differentiated Approach to a Well-validated Target

- HER2 is a well-validated target with multiple potential indications
 - Breast cancer, gastric cancer, NSCLC, colorectal cancer
 - Patient selection assays readily available
- Mersana developed a differentiated anti-HER2 antibody with Adimab
 - Specifically optimized for use in an ADC
 - Does not compete with trastuzumab or pertuzumab for HER2 binding
 - Rationale and opportunity for therapeutic combinations
- STING pathway is differentiated from other innate immune pathways
 - Activation in tumor cells and tumor-resident immune cells

XMT-2056: Mersana's First Immunosynthen Development Candidate

XMT-2056 Outperforms diABZI IV STING Agonist and Trastuzumab TLR7/8 ISAC in Her2^{high} and HER2^{low} Models

XMT-2056 Targets a Novel HER2 Epitope Distinct from **Trastuzumab and Pertuzumab Allowing for Combinability**

9/10 tumor free

70 77

0/10 tumor free

1/10 tumor free

35 42

XMT-2056 Offers a Potentially Differentiated and Complementary Approach to the **Treatment of HER2-Expressing Tumors**

Combination of XMT-2056 with Trastuzumab Or Pertuzumab Shows Benefit In Vivo

Vehicle

Vehicle

Trastuzumab <u>or</u> Pertuzumab (2 mg/kg, IP) Non-binding control ADC (0.2 / 0.007 mg/kg, IV) XMT-2056 (0.2 / 0.009 mg/kg, IV) XMT-2056 (0.2 / 0.009 mg/kg, IV) + Tras <u>or</u> Pert (2 mg/kg, IP)

(ADC doses by mAb / payload mg/kg)

[&]CCLE RNAseq data from DepMap, Broad (2021): DepMap 21Q3 Public 18

Benefit from Combination of XMT-2056 with Enhertu (Trastuzumab deruxtecan) in a Tras^R Model

October 15, 2016

Benefit from Combining XMT-2056 Surrogate with α PD1, and No Adverse Clinical Signs, in a ratHER2 Engineered Syngeneic Tumor

Rat HER2 expressed in EMT-6 mouse breast cancer model

Control ADC (0.3 / 0.012 mg/kg), single IV dose XMT-2056 Surrogate ADC (0.3 / 0.01 mg/kg), single IV dose (mAb = murine IgG2a targeting ratHER2)

Additional study planned in a ratHER2 GEMM derived tumor model

20

Weight Ch

No notable treatment related clin. Obs.

Davs on Study

28 35

XMT-2056 Displays a Therapeutic Index Based on Exposure in Relevant Pre-clinical Species

NHP Results

Repeat dose studies at <u>36 mg/kg antibody intravenous administration</u>

- No clinical signs, no mortality (considered a NOAEL)
- High exposure, high ADC stability in circulation
- Transient elevation of 5 cytokines out of 24 tested
- No adverse changes in clinical pathology
- No adverse findings in histopathology

XMT-2056 - Summary

- XMT-2056 offers a novel approach to the treatment of HER2-expressing tumors.
- Preclinical data to date shows it:
 - Utilizes a novel antibody that is non-competitive with trastuzumab and pertuzumab
 - Demonstrates target-dependent STING activation of tumor cells <u>and</u> tumor-resident immune cells, both of which can contribute to the anti-tumor effect
 - Is highly efficacious as single agent and in combination with trastuzumab, pertuzumab, CPIs and trastuzumab deruxtecan (Enhertu)
 - Is well-tolerated with no adverse events in NHPs after repeat doses at exposures far exceeding those required for efficacy in mouse

Platform	ADC Program	Target	Indication	Discovery	Preclinical	P1 Dose Escalation	P1 Dose Expansion	P2/Pivotal	P3
Dolaflexin	Upifitamab Rilsodotin (UpRi)*	NaPi2b	Platinum-Resistant Ovarian Cancer	UPLIFT Single-Arm Registrational Trial					
			Platinum-Sensitive Ovarian Cancer	UPGRADE Phase 1-2 Combo					
			Recurrent Platinum- Sensitive Ovarian Cancer Maintenance	UP-NEXT Phase 3 Trial					
Dolasynthen	XMT-1660	B7-H4	Multiple Solid Tumors						
Immunosynthen	XMT-2056	Novel HER2 Epitope	Multiple Solid Tumors			GSł	< **		
	XMT-2068	Tumor-Associated Antigen	Undisclosed						
	XMT-2175	Tumor-Associated Antigen	Undisclosed						
Collaborators:									
Dolasynthen	Janssen	Multiple	Undisclosed						
Dolaflexin	SEROND ***	Multiple	Undisclosed)			
		5T4	Undisclosed						

*NaPi2b antibody used in UpRi (formerly XMT-1536) is in-licensed from Recepta Biopharma. Recepta has rights to commercialize UpRi in Brazil. **XMT-2056 is wholly owned by Mersana, with GSK having an exclusive global license option to co-develop and commercialize the candidate.

***EMD Serono is an affiliate of Merck KGaA.

I would very much like to acknowledge the tireless efforts of the multi-disciplinary team at Mersana, including Research, CMC, Clinical Development, Regulatory, and many others, for the tremendous effort to bring XMT-2056 to the clinic, as well as our collaborators as we continue to advance it for the potential benefit to patients